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Abstract
We study the relation of Yangians and spinons in the SU(n) Haldane–Shastry
model. The representation theory of the Yangian is shown to be intimately
related to the fractional statistics of the spinons. We construct the spinon
Hilbert space from tensor products of the fundamental representations of the
Yangian.

PACS numbers: 02.20.Uw, 02.30.Ik, 05.30.Pr, 75.10.Pq

1. Introduction

Quantum groups [1, 2] first arose from the quantum inverse scattering method [3, 4], which
had been developed to construct and solve integrable quantum systems. In particular, quantum
groups provide a way to construct and study the solutions, called R-matrices, of the quantum
Yang–Baxter equation. Mathematically, quantum groups are deformations of the universal
enveloping algebra of the classical Lie algebras. In general, they depend on a parameter h and
the underlying Lie algebra is recovered in the limit h → 0. Yangians are special quantum
groups which were first introduced by Drinfel’d in 1985 [1]. Their representation theory is
intimately related [5, 6] to the rational R-matrices.

Later it was discovered that Yangians also appear as additional symmetries of quantum
field theories [7, 8], and furthermore, that Yangians are part of the symmetry algebra of special
integrable spin systems. In particular, the one-dimensional nearest-neighbour Heisenberg
model possesses a Yangian symmetry in the limit of a chain of infinite length [9], whereas
the Haldane–Shastry model possesses a Yangian symmetry even for a chain of finite length
[8, 10]. In addition, a Yangian symmetry exists for the one-dimensional Hubbard model on
an infinite chain [11] as well as for a finite chain with suitable hopping amplitudes [12, 13].

From a physical point of view, the Haldane–Shastry model (HSM) [14] owes its special
importance to two reasons. The first and more technical one is that the model is exactly solvable
even for a chain of finite length. It is possible to derive explicit wavefunctions for the ground
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state and the elementary spinon excitations [15]. The second and more fundamental reason is
that the HSM possesses non-interacting or free spinon excitations [16], a conclusion which is
in particular supported by the trivial spinon–spinon scattering matrix calculated by Essler [17]
using the asymptotic Bethe Ansatz. In 2001, this picture was challenged by Bernevig et al
[18], who studied the explicit two-spinon wavefunctions and claimed to have identified effects
of an interaction between the spinons. A critical re-examination [19] of their conclusions,
however, showed that these alleged interaction effects are in fact due to the fractional statistics
of the spinons [20], which results in non-trivial quantization rules for the individual spinon
momenta [21]. This debate showed that free particles may appear interacting at first sight if
an inappropriate representation is chosen.

In this paper, we investigate the relation between the Yangian symmetry and the physical
properties of the spinons. We show that individual spinons in the HSM transform under the
fundamental representation of the Yangian. We then study the implications of the Yangian
symmetry on many-spinon states. The main result of this analysis is the derivation of a general
rule governing the fractional statistics of the spinons. This rule states that in the spinon Hilbert
space only the irreducible subrepresentations of the tensor products of certain fundamental
representations of the Yangian exist. This enables us to derive, starting from a set of individual
spinon momenta, the allowed values of the total spin of the corresponding many-spinon states,
which are subject to highly non-trivial restrictions due to the fractional statistics of the spinons.
All results are generalized to the elementary excitations of the SU(3) HSM.

Before we discuss the main topic of this paper, we will briefly review the HSM and
its most important physical features, and give a concise introduction to Yangians and their
representation theory.

2. Haldane–Shastry model

In 1988, Haldane and Shastry discovered independently [14] that a trial wavefunction proposed
by Gutzwiller [22] in 1963 provides the exact ground state to a Heisenberg-type spin
Hamiltonian whose interaction strength falls off as the inverse square of the distance between
two spins on the chain. Later the model was generalized to an SU(n) spin by Kawakami [23].

The HSM is most conveniently formulated by embedding the one-dimensional chain with
periodic boundary conditions into the complex plane by mapping it onto the unit circle with
the (SU(n)) spins located at complex positions ηα = exp

(
i 2π

N
α
)
, where N denotes the number

of sites and α = 1, . . . , N . The Hamiltonian is given by [14]

HHS = 2π2

N2

N∑
α �=β

Sα ·Sβ

|ηα − ηβ |2 . (1)

The SU(3) HSM [23] is given by replacing Sα by the eight-dimensional SU(3) spin vector
Jα = 1

2

∑
στ c†ασ λστ cατ , where λ is a vector consisting of the eight Gell–Mann matrices [24],

and σ and τ are SU(3) spin or colour indices which take the values blue (b), red (r) or green (g)
(see figure 1(a)). The spins on the lattice sites transform under the fundamental representation
n of SU(n), e.g. S = 1/2 for SU(2).

The ground state (N = 2M,M integer) of the SU(2) model is given by

|�0〉 = PG

∣∣�N
SD

〉
,

∣∣�N
SD

〉 ≡
∏
q∈I

c
†
q↑c

†
q↓ |0〉, (2)

where the Gutzwiller projector PG eliminates configurations with more than one particle on
any site and the interval I contains M adjacent momenta. For SU(n), each momentum in I
has to be occupied by n particles with different spins [25].
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Figure 1. Weight diagrams of the three-dimensional representations of SU(3). J 3 and J 8 span the
Cartan subalgebra of su(3) [24].

The model is invariant under global SU(2) or SU(3) rotations generated by

S =
N∑

α=1

Sα (for SU(2)) or J =
N∑

α=1

Jα (for SU(3)), (3)

respectively. The system possesses an additional symmetry [8, 10], which is given by

Λ = i

2

N∑
α �=β

ηα + ηβ

ηα − ηβ

(Sα × Sβ) or �a = 1

2

N∑
α �=β

ηα + ηβ

ηα − ηβ

f abcJ b
α J c

β (4)

(we use the Einstein summation convention) where a, b, c = 1, . . . , 8 and f abc denote the
structure constants of SU(3). The total spin (3) and rapidity operator (4) generate the Yangian,
which we will discuss in detail below.

The elementary excitations of the SU(n) HSM are constructed by annihilation of a particle
from the Slater determinant state before Gutzwiller projection [15, 26],

|�pσ̄ 〉 = PGc−pσ

∣∣�N+1
SD

〉
, N = nM − 1. (5)

Here p denotes the momentum, σ either the spin (for n = 2) or one of the colons blue, red or
green (for n = 3). In order to ensure that every site is occupied by a spin after the projection,
we annihilate a particle from the Slater determinant state with N + 1 particles. Note that
for SU(2) the annihilation of an up-spin electron creates a down-spin spinon and vice versa.
The spinons possess spin 1/2 like the electrons on the lattice sites. For SU(3) the situation
is, however, fundamentally different. Here, the annihilation of a, say, blue particle creates
an anti-blue SU(3) spinon or coloron. (We will use the terms SU(3) spinon and coloron
simultaneously.) This means that colorons transform under the conjugate representation 3̄
(see figure 1(b)), if the particles on the sites transform under 3 [26, 27].

A non-orthogonal but complete basis for spin-polarized two-spinon eigenstates with total
momentum p = −k1 − k2 is given by (we assume k1 > k2)∣∣�p1σ̄ ,p2σ̄

〉 = PGck1σ ck2σ

∣∣�N+2
SD

〉
, N = nM − 2. (6)

These states are not energy eigenstates, but as HHS scatters k1 and k2 in only one direction
(increasing k1 − k2), there is a one-to-one correspondence between these basis states and
the exact eigenstates of the HSM. The total energy of the eigenstates takes the form of free
particles if and only if the single-spinon momenta are shifted with respect to k1,2 [19, 26]:

p1,2 = −k1,2 ± 1

2n

2π

N
, p1 < p2. (7)

The shift is due to the fractional statistics of the spinons [20, 21]. In general, all two-spinon
states with the same single-spinon momenta are obtained by acting with the total spin and

3
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rep Stot L a1, . . . , aL
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Figure 2. Examples of eigenstates of the SU(2) HSM with N = 6 sites in terms of spinons. The
dots represent the spinons, the first tableau is the ground state.

rapidity operators on the polarized states (6). In particular, for SU(2) the action of �zS− yields
the two-spinon singlet states. However, this two-spinon singlet state �zS− ∣∣�p1↑,p2↑

〉
exists

only for p2 − p1 > 1
2

2π
N

, as (6) is annihilated by �zS− for p2 − p1 = 1
2

2π
N

[8]. For general
many-spinon states or spinons in the SU(n) chain these restrictions on the possible values of
the total spin become highly non-trivial.

3. Tableau formalism

Recently, a formalism was introduced to obtain all existing many-spinon states starting from a
given set of single-spinon momenta [28]. The formalism works as follows. To begin with, the
Hilbert space of a system of N identical SU(n) spins can be decomposed into representations
of the total spin (3), which commutes with (1) and hence can be used to classify the energy
eigenstates. These representations are compatible with the representations of the symmetric
group SN of N elements, which may be expressed in terms of Young tableaux [29]. In order to
obtain these Young tableaux, we draw for each of the N spins a box numbered consecutively
from left to right. The representations of SU(n) are constructed by putting the boxes together
such that the numbers assigned to them increase in each row from left to right and in each
column from top to bottom. Each tableau obtained in this way represents an irreducible
representation of SU(n); it further indicates symmetrization over all boxes in the same row,
and antisymmetrization over all boxes in the same column. This implies that we cannot have
more than n boxes on top of each other for SU(n) spins.

Now, there is a one-to-one correspondence between these Young tableaux and the non-
interacting many-spinon states, i.e., the eigenstates of the HSM. The principle is illustrated
for a few representations of an SU(2) chain with six sites in figure 2, and for an SU(3) chain
in figure 3. In each Young tableau we shift boxes to the right such that each box is below
or in the column to the right of the box with the preceding number. Each missing box in
the resulting, extended tableaux represents a spinon, to which we assign a spinon momentum
number (SMN) ai as follows: for an SU(2) chain, it is simply given by the number in the box
in the same column. For a general SU(n) chain, the SMN’s for the spinons in each column
are given by a sequence of numbers (half-integers for n odd, integers for n even) with integer
spacings such that the arithmetic mean equals the arithmetic mean of the numbers in the boxes
of the column, as illustrated in the examples presented in figure 3. The extended tableaux
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Figure 3. Examples of eigenstates of the SU(3) HSM with N = 6 sites in terms of colorons.

provide us with the total SU(n) spin of each multiplet (given by the original Young tableau), as
well as the number L of spinons present and the individual single-spinon momenta p1, . . . , pL

given in terms of the SMN’s as

pi = 2π

N

ai − 1
2

n
, (8)

which implies 0 � pi � 2π
n

for N → ∞. The total momentum and Haldane–Shastry energies
of the many-spinon states are

p = p0 +
L∑

i=1

pi, E = E0 +
L∑

i=1

ε(pi), (9)

where p0 and E0 denote the ground-state momentum and energy given by

p0 = − (n − 1)π

n
N, E0 = −π2

12

(
n − 2

n
N +

2n − 1

N

)
, (10)

and the single-spinon dispersion is

ε(p) = n

4
p

(
2π

n
− p

)
+

n2 − 1

12n

π2

N2
. (11)

This formalism provides the complete spectrum of the HSM [28]. It is easy to see that the
momentum spacings for spin-polarized spinons predicted by this formalism reproduce (7) for
general n, and that spinons transform under the representation n̄ of SU(n).

4. Yangians

In this section, we discuss the Yangian of sln. Let {I a} be an orthonormal basis with respect
to a scalar product 〈·, ·〉 of sln. We will use

〈X, Y 〉 = tr(XY ), X, Y ∈ sln. (12)

5
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For example, an orthonormal basis of sl2 is then given by I a = √
2Sa = σa/

√
2 with the Pauli

matrices σa, a = 1, 2, 3. The operators I a fulfil the algebra

[I a, I b] = cabcI c, a, b, c = 1, . . . , n2 − 1, (13)

where cabc are the structure constants, e.g. cabc = i
√

2εabc for sl2.
The Yangian Y(sln) [1] of sln is the infinite-dimensional associative algebra over C

generated by the elements I a, Ia with defining relations

[I a, I b] = cabcI c, [I a, Ib] = cabcIc, (14)

[Ia, [Ib, I c]] − [I a, [Ib, Ic]] = cabcdef {I d, I e, I f }, (15)

[[Ia, Ib], [I i, Ij ]] + [[I i , Ij ], [I a, Ib]] = (cabcdef cijc + cijcdef cabc){I d, I e, If }, (16)

where repeated indices are summed over and

cabcdef = 1

24
cadicbej ccf kcijk, {Xa,Xb,Xc} =

∑
π∈S3

Xπ(a)Xπ(b)Xπ(c). (17)

Y(sln) has a Hopf algebra structure with comultiplication � : Y(sln) → Y(sln)⊗Y(sln) given
by

�(Ia) = I a ⊗ 1 + 1 ⊗ I a, �(Ia) = Ia ⊗ 1 + 1 ⊗ Ia − 1
2cabcI b ⊗ I c. (18)

The counit ε : Y(sln) → C and the antipode S : Y(sln) → Y(sln) will not be used in this
paper; there definitions can be found in the literature [1, 6]. The defining relations (14)–(16)
depend on the choice of the scalar product (12) but, up to isomorphism, the Hopf algebra
Y(sln) does not [6]. We have chosen (12) in order to match the notations of [5, 30] for the
representation theory of Y(sln).

The algebra generated by the total spin (3) and rapidity operator (4) is recovered with the
identifications

Sa = 1√
2
I a or J a = 1√

2
I a, �a = 1√

2
Ia, (19)

hence, the Yangian constitutes a symmetry of the HSM [8, 10]. The comultiplication defines
the action of the operators (19) on two-particle states, and being a homomorphism it is
consistent on three-particle states.

There is another realization of the Yangian, first given by Drinfel’d in 1988 [31], which
will be used to set the representation theory of the Yangian in the following section. It is based
on the Cartan–Weyl basis [24] of sln, which for n = 2 is given in terms of the spin operators
by

H1 = 2Sz, X±
1 = S± = Sx ± iSy, (20)

whereas for n = 3 we have explicitly

H1 = 2J 3, H2 =
√

3J 8 − J 3, (21)

X±
1 = I± = J 1 ± iJ 2, X±

2 = U± = J 6 ± iJ 7, V ± = J 4 ± iJ 5. (22)

The operators I± and U± are sufficient to span sl3 as we can re-express the non-simple root
as V ± = I± + U±.

With the identifications Hi,0 = Hi and X±
i,0 = X±

i the relations of the Yangian Y(sln)
read as follows [6, 31] (1 � i � n − 1, k ∈ N0):

[Hi,k,Hj,l] = 0,
[
Hi,0, X

±
j,k

] = ±BijX
±
j,k,

[
X+

i,k, X
−
j,l

] = δijHi,k+l , (23)

6
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[
Hi,k+1, X

±
j,l

] − [
Hi,k, X

±
j,l+1

] = ± 1
2Bij

(
Hi,kX

±
j,l + X±

j,lHi,k

)
, (24)

[
X±

i,k+1, X
±
j,l

] − [
X±

i,k, X
±
j,l+1

] = ± 1
2Bij

(
X±

i,kX
±
j,l + X±

j,lX
±
i,k

)
, (25)[

X±
i,k1

,
[
X±

i,k2
, X±

j,l

]]
+

[
X±

i,k2
,
[
X±

i,k1
, X±

j,l

]] = 0, for i = ±(j + 1), (26)[
X±

i,k, X
±
j,l

] = 0, for i �= j,±(j + 1), (27)

where Bii = 2, Bi,i+1 = Bi,i−1 = −1 and Bij = 0 otherwise.
For simplicity we state the isomorphism between the two realizations of Y(sln) only for

the diagonal operators in the cases n = 2 and n = 3. For Y(sl2) it is given by

Sz �→ 1
2H1,0, �z �→ 1

2H1,1 + 1
4

(
S+S− + S−S+ − H 2

1,0

)
, (28)

while for Y(sl3) it reads

J 3 �→ 1
2H1,0, J 8 �→ 1

2
√

3
H1,0 + 1√

3
H2,0, (29)

�3 �→ 1
2H1,1 − 1

4H 2
1,0 + 1

4 (I +I− + I−I +) − 1
8 (U+U− + U−U+ − V +V − − V −V +), (30)

�8 �→ 1
2
√

3
H1,1 + 1√

3
H2,1 − 1

4
√

3
H 2

1,0 − 1
2
√

3
H 2

2,0

+
√

3
8 (U+U− + U−U+ + V +V − + V −V +). (31)

Here, we have used the short-hand notations S± = X±
1,0 as well as I± = X±

1,0, U
± = X±

2,0 and
V ± = X±

1,0 + X±
2,0.

5. Representations of Yangians

The representation theory of Y(sln) [5, 6, 30, 32] is based on the existence of the evaluation
homomorphism, which connects Y(sln) with the universal enveloping algebra U(sln) of sln.
For all ξ ∈ C, evξ : Y(sln) → U(sln) is given by

I a �→ I a, Ia �→ ξI a +
1

4

n2−1∑
b,c=1

tr(I a(I bI c + I cI b))I bI c, (32)

where the trace is computed by representing I a as n × n matrices. In general, given a
representation of sln one obtains a one-parameter family of Y(sln) representations via the
pull-back of the evaluation homomorphism. Explicitly, if φ is a representation of sln on
V, φξ = φ◦evξ is a representation of Y(sln) on V , which is called the evaluation representation
with the spectral parameter ξ .

A representation V of the Yangian Y(sln) is said to be highest weight, if there exists a
vector v ∈ V such that V = Y(sln)v and

X+
i,kv = 0, Hi,kv = di,kv, (33)

with an array of complex numbers (di,k). In this case, v is called the Yangian highest weight
state (YHWS) of V and (di,k) its highest weight. As it was shown by Drinfel’d [31], the
irreducible highest weight representation V of Y(sln) with highest weight (di,k) is finite
dimensional if and only if there exist monic polynomials Pi ∈ C[u], 1 � i � n − 1 such that

Pi(u + 1)

Pi(u)
= 1 +

∞∑
k=0

di,k

uk+1
, (34)

7
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in the sense that the right-hand side is a Laurent expansion of the left-hand side about u = ∞
[30]. Hence, the Drinfel’d polynomials Pi(u) classify the finite-dimensional irreducible
representations of the Yangian. The ith fundamental representation of Y(sln) with spectral
parameter ξ ∈ C is defined as the irreducible highest weight representation with Drinfel’d
polynomials

Pi(u) = u − ξ, Pj (u) = 1 for j �= i. (35)

We will denote the fundamental representation of Y(sl2) with Drinfel’d polynomial P(u) =
u − ξ by V

( 1
2 , ξ

)
. It can be constructed explicitly as the pull-back of the sl2 representation 1

2
under evξ . For Y(sl3) we denote by V (3, ξ) and V (3̄, ξ) the three-dimensional representations
with Drinfel’d polynomials P1(u) = u − ξ, P2(u) = 1 and P1(u) = 1, P2(u) = u − ξ ,
respectively. If V (3, ξ) and V (3̄, ξ) are realized as evaluation representations, we obtain an
additional shift in the spectral parameter due to the trace on the right-hand side of (32). For
example, V (3̄, ξ) is obtained as an evaluation representation of the sl3 representation 3̄ with
evaluation parameter ξ + 2/3 (see appendix A).

5.1. Representation theory of Y (sl2)

In the following, we denote the evaluation representation of the (m + 1)-dimensional sl2
representation m

2 with spectral parameter ξ ∈ C by V
(

m
2 , ξ

)
. The Drinfel’d polynomial of

V
(

m
2 , ξ

)
is given by [5]

P(u) =
(

u − ξ +
m − 1

2

) (
u − ξ +

m − 3

2

)
· · ·

(
u − ξ − m − 1

2

)
. (36)

Now, let V1 and V2 be two representations of Y(sl2). The action of X ∈ Y(sl2) on the
tensor product V1 ⊗V2 is given by �(X), where � is the comultiplication (18). We stress that
due to the last term of �(Ia)V1 and V2 are intertwined. In particular, as � is not commutative,
V1 ⊗ V2 and V2 ⊗ V1 are not isomorphic in general. In all cases, however, if v+

1 and v+
2 are the

YHWS’s of V1 and V2, respectively, the vector v+
1 ⊗ v+

2 will be the YHWS of V1 ⊗ V2. The
action of Y(sl2) on r-fold tensor products is defined by repeated application of �.

The central theorem on the tensor product V = V
(

m1
2 , ξ1

) ⊗ V
(

m2
2 , ξ2

)
is due to Chari

and Pressley [5]:

(i) If |ξ1 −ξ2| �= m1+m2
2 −p+1 for all p ∈ N with 0 < p � min(m1,m2), then V is irreducible

as Y(sl2) representation.
(ii) If ξ2 − ξ1 = m1+m2

2 − p + 1 for some p ∈ N with 0 < p � min(m1,m2), then V has a
unique proper Y(sl2) subrepresentation W generated by the highest weight vector of V .
Explicitly, we have

W ∼= V
(

p−1
2 , ξ1 + m1−p+1

2

)
⊗ V

(
m1+m2−p+1

2 , ξ2 − m1−p+1
2

)

and, as representation of sl2,W ∼= m1+m2
2 ⊕ · · · ⊕ m1+m2−2p+2

2 .

The third case, ξ1 − ξ2 = m1+m2
2 −p + 1 for some p ∈ N with 0 < p � min(m1,m2), was also

discussed in [5], but will not be used in the study of the HSM.
In order to illustrate the two different situations, we consider the simplest non-trivial

case V = V
( 1

2 , ξ1
) ⊗ V

( 1
2 , ξ2

)
for ξ1 < ξ2. Clearly, regarded as representation of sl2V it

decomposes as V ∼= 1 ⊕ 0. If ξ2 − ξ1 �= 1, then V is irreducible as Y(sl2) representation.
One can always find an operator in Y(sl2) which yields a singlet state when acting on a triplet
state and vice versa. If ξ2 − ξ1 = 1, however, V contains a proper Y(sl2) subrepresentation
W ∼= 1 generated by the YHWS. In particular, there exists no operator in Y(sl2) which yields

8
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the singlet state when acting on a triplet state. However, it is possible to obtain a triplet state
when acting on the spin singlet state with an appropriate operator. Hence, V is not a direct
sum of irreducible Y(sl2) representations.

The highest weight of V = V
(

m1
2 , ξ1

) ⊗ V
(

m2
2 , ξ2

)
is obtained from its Drinfel’d

polynomial, which is in the irreducible case simply given by the product of the original
polynomials [5]. In the reducible case the highest weight is determined by the highest weight
component of V using (36).

5.2. Representation theory of Y (sl3)

The representation theory of Y(sl3) is not known in the same detail as it is for Y(sl2). Although
there exist irreducibility criteria for tensor products of evaluation representations of Y(sln) [32],
an explicit description of the irreducible subrepresentation of such tensor products including
its spectral parameter is missing. We will restrict ourselves here to tensor products of two
fundamental representations of Y(sl3). There are three different situations [30]:

(i) V = V (3, ξ1)⊗ V (3, ξ2) is reducible as Y(sl3) representation if and only if ξ1 − ξ2 = ±1.
If ξ2 − ξ1 = 1, then V has a proper Y(sl3) subrepresentation W generated by the highest
weight vector of V and, as representation of sl3,W ∼= 6.

(ii) V = V (3, ξ1)⊗V (3̄, ξ2) (or V = V (3̄, ξ1)⊗V (3, ξ2)) is reducible as Y(sl3) representation
if and only if ξ1 − ξ2 = ±3/2. If ξ2 − ξ1 = 3/2, then V has a proper Y(sl3)
subrepresentation W generated by the highest weight vector of V and, as representation
of sl3,W ∼= 8.

(iii) V = V (3̄, ξ1)⊗V (3̄, ξ2) is reducible as Y(sl3) representation if and only if ξ1 − ξ2 = ±1.
If ξ1 − ξ2 = 1, then V has a proper Y(sl3) subrepresentation W not containing the highest
weight vector of V and, as representation of sl3,W ∼= 3. If ξ2 − ξ1 = 1, then V has a
proper Y(sl3) subrepresentation W generated by the highest weight vector of V and, as
representation of sl3,W ∼= 6̄.

If the tensor product V = V1 ⊗V2 is irreducible, the Drinfel’d polynomials of V are given
by the products of the polynomials of V1 and V2 [6]. Furthermore, we show in appendix B that
the proper Y(sl3) subrepresentation W of V (3̄, ξ)⊗V (3̄, ξ −1) is given by W ∼= V

(
3, ξ − 1

2

)
.

6. Spinons and representations of Y(sl2)

As mentioned above it is well known [8, 10] that the SU(2) HSM possesses the
Yangian symmetry Y(sl2) and therefore that its Hilbert space decomposes into irreducible
representations of Y(sl2). It is also known [28] how to built up the Hilbert space of the HSM
by non-interacting spinon excitations. In this section, we will study the relation between these
many-spinon states and representations of Y(sl2).

6.1. One-spinon states

We first derive the relation between the one-spinon states and the fundamental representations
of Y(sl2). Consider a chain with an odd number of sites N. The individual one-spinon momenta
are given by [15, 18]

p = π

2
− 2π

N

(
µ +

1

4

)
, 0 � µ � N − 1

2
, (37)

9
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where we have assumed N − 1 to be divisible by four, and thereby restricted the momentum
to −π/2 � p � π/2. The up-spin spinons are YHWS’s (they are annihilated by S+,�+, . . .),
their spin currents are given by [18]

�z |↑〉 =
(

N − 1

4
− µ

)
|↑〉 . (38)

Here |↑〉 denotes the state with one up-spin spinon.
On the other hand the one-spinon states are represented by tableaux of the form

a
a = N − 2µ, 0 � µ � N − 1

2
,

where we omit the superfluous numbers in the boxes of the tableaux. Note that (37) is
recovered using (8)–(10). Now, (28) together with (38) yields

H1,1 |↑〉 =
(

2�z − 1

2
[S+S− + S−S+ − 4(Sz)2]

)
|↑〉 =

(
a − N + 1

2

)
|↑〉 , (39)

where the term in squared brackets vanishes as the spinon possesses spin S = 1/2.
Hence, individual spinons transform under the Y(sl2) representation V

( 1
2 , ξ

)
, where the

spectral parameter ξ is in terms of the SMN given by

ξ = a − N + 1

2
, −N − 1

2
� ξ � N − 1

2
. (40)

6.2. Two-spinon states

Let us consider two spin-polarized spinons represented by the tableau

a1 < a2

a1 = N − 2µ − 1, a2 = N − 2ν,

0 � ν � µ
N − 2

2

Note that, as N is even, a1 is always odd and a2 is always even. There are two fundamentally
different cases. If a2 − a1 > 1, there exists a two-spinon singlet with the same SMN’s
(and hence the same energy), whereas for a2 − a1 = 1 there exists no corresponding singlet.
Graphically we have

a2 − a1 > 1 : and

a2 − a1 = 1 : only.

This can be understood by applying the representation theory of Y(sl2). In both cases
the two spinons transform under the product representation V = V

( 1
2 , ξ1

) ⊗ V
( 1

2 , ξ2
)
, where

the spectral parameters are given by ξ1,2 = a1,2 − (N + 1)/2, respectively. In the first case
we have ξ2 − ξ1 > 1, hence by section 5.1.i V is irreducible as Y(sl2) representation. As sl2
representation we have V ∼= 1 ⊕ 0, i.e., the triplet and singlet represented by the two tableaux
shown above. V is generated by its YHWS, which is the spin-polarized two-spinon state
|↑↑〉 = |↑〉 ⊗ |↑〉. In particular, the operator �zS− ∈ Y(sl2) yields the two-spinon singlet
state when acting on the YHWS, �zS− |↑↑〉 ∝ |↑↓〉 − |↓↑〉, while leaving the individual
spinon momenta and hence the energy unchanged.

10
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In the second case we have ξ2 − ξ1 = 1, and by section 5.1.ii V is reducible. The YHWS
of V , which is again |↑↑〉, generates the proper Y(sl2) subrepresentation W ∼= 1, i.e., only the
triplet states are generated by |↑↑〉 and, in particular, it is �zS− |↑↑〉 = 0. This is reflected
by the existence of only one tableau if the SMN’s fulfil a2 − a1 = 1, and is consistent with
results drawn from the asymptotic Bethe Ansatz for the HSM [8, 33] as well as conformal
field theory spectra [34].

The loss of the singlet, i.e., its non-existence in the spinon Hilbert space, is a manifestation
of the fractional statistics of the spinons. The momentum spacings for two spinons with
individual momenta p1 and p2 (p2 > p1) are in general given by p2−p1 = 2π(1/2+�)/N, � ∈
N0 [19]. When the spinons occupy adjacent momenta, p2 − p1 = π/N , only the triplet
exists, which is mathematically implemented by the requirement of irreducibility under Y(sl2)
transformations. In analogy, the Pauli principle enforces two electrons with identical momenta
to form a spin singlet, whereas otherwise a spin triplet exists as well. The difference between
electrons and spinons is, however, that the wavefunction of free electrons factorizes in a spin
part, transforming under SU(2), as well as a momentum part, transforming under (lattice)
translations; the product of both has to be antisymmetric under permutations. In contrast
we cannot factorize spin and momentum of the spinons, as both are incorporated in the
representations of Y(sl2) (the lattice translations are implemented as shifts of the spectral
parameter ξ ). It seems that this entanglement of spin and momentum makes it impossible
to implement the fractional statistics by the requirement of a definite transformation law
under permutations of the spinons. In fact, this requirement is replaced by the postulate of
irreducibility under Yangian transformations.

The spin current of the polarized two-spinon state |↑↑〉 is easily obtained from Drinfel’d
polynomial of the irreducible subrepresentation of V

( 1
2 , ξ1

) ⊗ V
( 1

2 , ξ2
)
, which is given by

P(u) = (u − ξ1)(u − ξ2). Hence, with (33) and (34) we find

H1,1 |↑↑〉 = (ξ1 + ξ2 + 1) |↑↑〉 = (N − 2µ − 2ν − 1) |↑↑〉 , (41)

and with (28) we obtain the physical spin current

�z |↑↑〉 =
(

N − 2

2
− µ − ν

)
|↑↑〉 , (42)

which equals the result obtained using explicit wavefunctions [18].

6.3. Many-spinon states

If three spinons are present, there are three different cases, which are graphically represented
by

a1 a2 a3

(i)

a1a2 a3

(ii)

a1a2a3

(iii)

In all three cases we have to determine the irreducible subrepresentation of V = V
( 1

2 , ξ1
) ⊗

V
( 1

2 , ξ2
) ⊗ V

( 1
2 , ξ3

)
, where the spectral parameters are given by ξi = ai − (N + 1)/2. In the

first case V is irreducible and generated by its YHWS |↑↑↑〉. As sl2 representation we find
3
2 ⊕ 1

2 ⊕ 1
2 , which is the complete eight-dimensional space 1

2 ⊗ 1
2 ⊗ 1

2 . The 3
2 is given by the

tableau (i) above; the tableaux representing the two 1
2 ’s are obtained from (i) by moving either

the second or the third spinon to the first row.
In the second case we have ξ2 − ξ1 = 1 and deduce using section 5.1.ii that the irreducible

subrepresentation of V
( 1

2 , ξ1
) ⊗ V

( 1
2 , ξ2

)
is V

(
1, ξ1 + 1

2

)
. The remaining tensor product

11
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V
(
1, ξ1 + 1

2

)⊗V
( 1

2 , ξ3
)

is irreducible, and as sl2 representation we obtain 3
2 ⊕ 1

2 , which is only
six dimensional. The loss of one 1

2 is reflected by the fact that the second spinon in the tableau
(ii) is fixed to the lower row. Note that this result is not affected if a2 and a3 were adjacent
instead of a1 and a2, although the specific values of the spectral parameters will change.

In the third case the irreducible subrepresentation of V
( 1

2 , ξ1
) ⊗ V

( 1
2 , ξ2

)
is again given

by V
(
1, ξ1 + 1

2

)
, however, this time the remaining tensor product is reducible as well; and its

irreducible subrepresentation is given by V
( 3

2 , ξ1 + 1
)
. As sl2 representation we only have 3

2
which is represented by the tableau (iii).

To give a more general example let us first consider a six-site chain and the four-spinon
tableau

The spin-polarized state in this multiplet, |↑↑↑↑〉, generates the irreducible subrepresentation
of

V
( 1

2 ,− 5
2

) ⊗ V
( 1

2 ,− 3
2

) ⊗ V
( 1

2 , 3
2

) ⊗ V
( 1

2 , 5
2

)
, (43)

which is given by V (1,−2) ⊗ V (1, 2). As sl2 representation this is given by 2 ⊕ 1 ⊕ 0, which
is represented by the tableaux

In the same way we can analyse the space generated by the YHWS of the seven-spinon
tableau

where N = 17. We couple adjacent spinons according to section 5.1(ii), and find the
irreducible subrepresentation to be

V
(
1,− 11

2

) ⊗ V
( 3

2 ,−1
) ⊗ V

( 1
2 , 5

) ⊗ V
( 1

2 , 8
)
, (44)

which as sl2 representation reads

1 ⊗ 3
2 ⊗ 1

2 ⊗ 1
2 = 7

2 ⊕ 5
2 ⊕ 5

2 ⊕ 5
2 ⊕ 3

2 ⊕ 3
2 ⊕ 3

2 ⊕ 3
2 ⊕ 1

2 ⊕ 1
2 ⊕ 1

2 . (45)

The corresponding tableaux are easily constructed using that the first, second and fifth spinons
are fixed to the lower row, and the fourth spinon can only move to the upper row if the third
one does.

The general scheme works as follows. Any spin-polarized m-spinon state is represented
by a tableau with all spinons in the second row. The individual spinon momenta are given in
terms of the SMN’s ai . The space generated by this YHWS under the action of Y(sl2) is the
irreducible subrepresentation W of the tensor product

V =
m⊗

i=1

V
( 1

2 , ξi

)
, ξi = ai − N + 1

2
, (46)

where ξi’s have ascending order. In order to construct W one first determines the irreducible
subrepresentations of all partial products in (46) which have consecutive spectral parameters
ξi+1 − ξi = 1 using section 5.1(ii). (Note that we can without loss of generality begin with
these products as the comultiplication (18) is associative.) The remaining tensor product is
then irreducible by repeated application of section 5.1(i) (for a proof see [5]). The sl2 contents
is determined by a straightforward calculation.

12
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To sum up, spinons in the HSM transform under the Y(sl2) representation V
( 1

2 , ξ
)
, where

the spectral parameter ξ is via (40) and (8) directly connected to the spinon momentum. All m-
spinon states with given individual momenta p1, . . . , pm are generated by the YHWS of (46),
meaning that they span the irreducible subrepresentation W . The complete Hilbert space is the
direct sum of these subspaces. From a mathematical point of view the tableau formalism [28]
hence provides an algorithm to determine the sl2 content of the irreducible subrepresentation of
a tensor product of fundamental Y(sl2) representations (46) with increasing spectral parameters
(the restriction to integer or half-integer spectral parameters ξi is no limitation, since all ξi’s
can be shifted simultaneously and tensor products where the spacings ξj − ξi are not integers
are irreducible [5]).

7. Colorons and representations of Y(sl3)

In this section, we will investigate the relation between the Y(sl3) symmetry of the SU(3)
HSM and its coloron excitations.

7.1. One-coloron states

Consider a chain with N = 3M − 1,M ∈ N, sites. Then the one-coloron momenta are given
by [26]

p = 4π

3
− 2π

N

(
µ +

1

3

)
, 0 � µ � (N − 2)/3. (47)

The SU(3) spin (or colour) currents of a yellow coloron |y〉, which is a Yangian lowest weight
state, are

1√
3
�3 |y〉 = �8 |y〉 = −

√
3

2

(
N − 2

6
− µ

)
|y〉 . (48)

In order to apply the representation theory of Y(sl3) it will be appropriate to work with
YHWS’s, that is magenta colorons |m〉, instead. As the fundamental representation V (3̄, ξ)

of Y(sl3) can be explicitly realized as evaluation representation (see appendix A), we obtain
the spin currents of |m〉 to be

�3 |m〉 = 0, �8 |m〉 =
√

3

(
N − 2

6
− µ

)
|m〉 . (49)

On the other hand a single coloron is represented by the tableau

a
a = N − 3µ − 1

2
, 0 � µ � N − 2

3
.

The spectral parameter of V (3̄, ξ) is determined from the eigenvalue of H2,1 when acting on the
YHWS |m〉. Using (31) together with H1,1 |m〉 = 0 we find H2,1 |m〉 = (

√
3�8 − 1/4) |m〉 =

(a − (2N + 3)/4) |m〉. Hence, colorons transform under the Y(sl3) representation V (3̄, ξ) with
spectral parameter

ξ = a − 2N + 3

4
, −2N − 3

4
� ξ � 2N − 5

4
. (50)

Note that although the allowed values for ξ are not symmetrically distributed around zero, the
eigenvalues of the physical spin current �8 are.
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7.2. Two-coloron states

Compared to the many-spinon states discussed above, the effect of the fractional statistics on
many-coloron states is rather complicated. We will discuss in this and the following sections
how the requirement of irreducibility under Y(sl3) transformations yields several restrictions
on the allowed SU(3) representations for many-coloron states.

Let us first consider two colorons with identical colours like |mm〉 = |m〉 ⊗ |m〉.
The individual coloron momenta p1 and p2 with p2 > p1 are spaced according to
p2 − p1 = 2π(2/3 + �)/N, � ∈ N0 (see (7)). Furthermore, for all pairs of momenta satisfying
this condition the SU(3) spin takes the values 3̄ ⊗ 3̄ = 6̄ ⊕ 3, which is graphically reflected by
the two tableaux

a1 < a2

and always a1 = N − 3µ − 5

2
, a2 = N − 3ν − 1

2
,

0 � ν � µ � N − 4

3
.

We note that a2 − a1 � 2 even if the colorons occupy adjacent columns, and that the YHWS
|mm〉 belongs to the left tableau. In order to determine the space generated by |mm〉 we have
to investigate the tensor product V = V (3̄, ξ1) ⊗ V (3̄, ξ2), where ξ1,2 = a1,2 − (2N + 3)/4,
respectively. By application of section 5.2(iii), V is irreducible. As sl3 representation we find
V ∼= 6̄ ⊕ 3, where the 6̄ is represented by the left tableau above and the 3 by the right tableau.
The spin currents of |mm〉 are obtained from the Drinfel’d polynomials of V, P1(u) = 1 and
P2(u) = (u − ξ1)(u − ξ2); they equal the results derived using explicit wavefunctions [26].

There are fundamentally different two-coloron states, namely the ones represented by
tableaux like

a1, a2

a1 = N − 3µ +
1

2
, a2 = N − 3µ − 1

2
,

0 � µ � N − 1

3
.

We have chosen the SMN’s to satisfy a1 = a2 + 1, which is supported by the following
consideration: we rewrite the momentum spacing as �p = p2 − p1 = 2π(g + �)/N, � ∈ N0,
where g denotes the statistical parameter of the colorons. With the assignment a1 = a2 + 1
we obtain (we keep the relations pi ↔ ai) g = −1/3 for the preceding tableau.
Moreover, the momentum spacings for the left two-coloron tableau above are also given
by p2 − p1 = 2π(−1/3 + �)/N if � takes the values � � 1. Hence, we obtain g = −1/3 for
all two-coloron states where the SU(3) spins of the colorons are coupled antisymmetrically,
i.e., all states represented by the tableaux where the two colorons occupy different rows.
The finding g = 2/3 for colour-polarized colorons (in general symmetrically coupled) and
g = −1/3 for colorons with different colours (in general antisymmetrically coupled) is also
consistent with what we find by naive state counting. A negative mutual exclusion statistics
was also deduced from the dynamical spin susceptibility of the SU(3) HSM calculated by
Yamamoto et al [35], and observed in conformal field theory spectra analysed by Schoutens
[36].

As a consequence, two colorons occupying the same column transform under the Y(sl3)
representation V = V (3̄, ξ)⊗V (3̄, ξ −1) with ξ = a1 − (2N + 3)/4. By section 5.2(iii), V is
reducible and the irreducible subrepresentation W does not contain the YHWS of V (which is
|mm〉). As sl3 representation we have W ∼= 3, i.e., the colorons are coupled antisymmetrically.
Hence, if the individual coloron momenta satisfy |p2 − p1| = 2π/3N , we deduce with the

14



J. Phys. A: Math. Theor. 41 (2008) 015208 D Schuricht

choice a1 = a2 + 1 and the requirement of irreducibility under Y(sl3) transformations that
only the sl3 representation 3 exists in the spectrum. This was also found heuristically in the
numerical study of the spectrum of the HSM [28], and is consistent with similar results for
conformal field theories [27].

Furthermore, it is shown in appendix B that the proper Y(sl3) subrepresentation W of
V (3̄, ξ) ⊗ V (3̄, ξ − 1) is explicitly given by

W = V
(
3, ξ − 1

2

)
. (51)

This means that W is a highest weight representation with YHWS |b〉 ∝ |mc〉 − |cm〉 (see
figure 1). We will see below that (51) is necessary and sufficient to build up the complete
Hilbert space of the SU(3) HSM with many-coloron states and the restrictions imposed by the
fractional statistics through the requirement of irreducibility under Y(sl3) transformations.

At this point we wish to underline that fractional statistics in SU(n) spin chains cannot be
implemented by the requirement of a definite transformation law under permutations of the
spinons (a one-dimensional representation of the symmetric group), as in specific situations
only the antisymmetric spin representations exist in the spinon Hilbert space, whereas in other
situations only the symmetric representations exist.

7.3. Three-coloron states

If three colorons are present, there are three different cases to be investigated. In the first case
the SMN’s a1,2,3 satisfy aj −ai � 2, i < j . The tensor product V (3̄, ξ1)⊗V (3̄, ξ2)⊗V (3̄, ξ3)

is irreducible, hence we find as sl3 representation 3̄ ⊗ 3̄ ⊗ 3̄ = 1̄0 ⊕ 8 ⊕ 8 ⊕ 1, which is
graphically represented by the corresponding tableaux:

⊕ ⊕ ⊕

We have drawn the tableaux for the smallest possible system with N = 6; the situation is
unchanged if the colorons do not occupy adjacent columns. The YHWS |mmm〉 belongs to
the representation 1̄0 (the left-most tableau).

In the second case two of the colorons occupy the same column, whereas the third coloron
is separated by at least one column. Graphically we have

or

The left tableau stands for the sl3 representation containing the YHWS of the tensor product
V (3̄, ξ1) ⊗ V (3̄, ξ1 − 1) ⊗ V (3̄, ξ2), where ξ2 − ξ1 � 4. Using (51) the irreducible
subrepresentation of V (3̄, ξ1) ⊗ V (3̄, ξ1 − 1) is V

(
3, ξ1 − 1

2

)
, hence the remaining tensor

product V
(
3, ξ1 − 1

2

)⊗V (3̄, ξ2) is irreducible by section 5.2(ii). As sl3 representation we find
8 ⊕ 1. The similar result is obtained for the right tableau. The sl3 representations 8 are given
by the tableaux above; the corresponding singlets are represented by

and

In the third case all the three colorons are close together, and two of them occupy the
same column. Graphically we have

or
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For example, the left tableau is translated into the tensor product V (3̄, ξ) ⊗ V (3̄, ξ − 1) ⊗
V (3̄, ξ + 1). As in the second case we first construct the irreducible subrepresentation
of the first two factors, which is given by V

(
3, ξ − 1

2

)
. The remaining tensor product

V
(
3, ξ − 1

2

) ⊗ V (3̄, ξ + 1) is reducible by section 5.2(ii), its irreducible subrepresentation is
as sl3 representation given by 8. This is reflected in the fact that no singlet tableau with the
same SMN’s exists. The loss of the singlet in this case was also observed in conformal field
theory spectra [27].

7.4. Many-coloron states

Let us first consider four colorons forming two antisymmetrically coupled pairs. Hence
we have to investigate the tensor product V = V (3, ξ1) ⊗ V (3, ξ2), where the results of
section 5.2(i) apply. If ξ2 − ξ1 > 1, then V is irreducible and V ∼= 6 ⊕ 3̄. If, however,
ξ2 − ξ1 = 1, then V is reducible and its irreducible subrepresentation is, as sl3 representation,
given by 6. These two situations are graphically represented by the tableaux

ξ2 − ξ1 > 1 : and

ξ2 − ξ1 = 1 : only.

If more than four colorons are present, the corresponding product representation of Y(sl3)
has to contain more than two fundamental representations. As the representation theory for
Y(sl3) is not known in the same detail as that of Y(sl2), we have to restrict ourselves to some
illuminating examples. Let us start with the highest-weight tableau

SMN’s : a1 = 3
2 , a2 = 1

2 , a3 = 5
2

a4 = 9
2 , a5 = 13

2 , a6 = 11
2 .

which stands for the tensor product (we have coupled colorons in the same column already)

V
(
3,− 11

4

) ⊗ V
(
3̄,− 5

4

) ⊗ V
(
3̄, 3

4

) ⊗ V
(
3, 9

4

)
. (52)

Using section 5.2.ii the first as well as the third tensor product is reducible; its irreducible
subrepresentations are V (8, ζ1) and V (8, ζ2), respectively. We have not determined the spectral
parameters explicitly, but expect them to satisfy −11/4 < ζ1 < −5/4 and 3/4 < ζ2 < 9/4
(in analogy to the Y(sl2) case [5]). Thus we have ζ2 − ζ1 > 2, which causes the irreducibility
of V = V (8, ζ1) ⊗ V (8, ζ2) [32]. As sl3 representation we find

8 ⊗ 8 = 27 ⊕ 10 ⊕ 1̄0 ⊕ 8 ⊕ 8 ⊕ 1. (53)

The irreducibility of V is confirmed by inspection of the allowed tableaux with six colorons
and the SMN’s given above, which are

A similar example is obtained from the tableau

SMN’s : a1 = 3
2 , a2 = 1

2 , a3 = 5
2

a4 = 9
2 , a5 = 13

2 , a6 = 11
2 .

We have to determine the irreducible subrepresentation of the tensor product

V
(
3,− 11

4

) ⊗ V
(
3̄,− 5

4

) ⊗ V
(
3, 1

4

) ⊗ V
(
3̄, 7

4

)
. (54)
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As before, we obtain as intermediate result V = V (8, ζ1)⊗V (8, ζ2), but this time the spectral
parameters satisfy −11/4 < ζ1 < −5/4 and 1/4 < ζ2 < 7/4. In particular, they are separated
by 1/2 less than in the preceding example. Inspection of the allowed tableaux with six colorons
and the given SMN’s, which are

shows that the irreducible subrepresentation of V is, as representation of sl3, given by
27 ⊕ 10 ⊕ 1̄0 ⊕ 8. The difference to (53) implies that V is reducible. Physically, the fractional
statistics of the colorons restricts the allowed SU(3) representations more than above, as the
individual coloron momenta are closer together.

As a final example consider the six-coloron states with SMN’s a1 = 3/2, a2 = 7/2, a3 =
5/2, a4 = 9/2, a5 = 7/2 and a6 = 11/2. For this set of SMN’s there exist only the two
tableaux

i.e., the irreducible subrepresentation of

V
(
3̄,− 9

4

) ⊗ V
(
3,− 3

4

) ⊗ V
(
3, 1

4

) ⊗ V
(
3̄, 7

4

)
, (55)

should be given by 27 ⊕ 10.
The general scheme for SU(3) works as follows. An m-coloron YHWS is represented by a

tableau in which the colorons sit at the bottom of the columns. First, we couple the colorons in
the same column, i.e., we construct the representations V (3, ζ ), where ζ is determined using
(50) and (51). The remaining colorons transform under V (3̄, ξ) with ξ given by (50). The
space generated under the action of Y(sl3) by the YHWS is the irreducible subrepresentation
W of the tensor product

V =
m′⊗
i=1

V (xi , ξi) , ξ1 < ξ2 < · · · < ξm′ , (56)

where xi denotes either 3 or 3̄, and m′ is the number of occupied columns in the tableau (the
number of isolated colorons plus the number of coloron pairs). As sl3 representation, W is
given by all tableaux with m colorons possessing the corresponding SMN’s.

To sum up, colorons transform under the Y(sl3) representation V (3̄, ξ), where the spectral
parameter ξ is directly connected to the individual coloron momentum. The space of m
colorons with momenta p1, . . . , pm is generated by the YHWS of (56) as explained above.
The restrictions on the SU(3) content of this space are due to the fractional statistics of the
colorons. From a mathematical point of view the tableau formalism provides an algorithm to
derive the sl3 content of the irreducible subrepresentation of a tensor product of fundamental
Y(sl3) representations (56) with increasing spectral parameters. As a by-product, this yields
an irreducibility criterion for tensor products of the form (56).

8. Conclusion

In conclusion, we have investigated the relation between the spinon excitations of the Haldane–
Shastry model and its Yangian symmetry. Each individual spinon transforms under the
fundamental representation of the Yangian. The associated spectral parameter is directly
proportional to its momentum. We have obtained a generalized Pauli principle which states
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that the spinon Hilbert space is built up by the irreducible subrepresentations of tensor products
of these fundamental representations. This enabled us to derive several restrictions on the total
spin of many-spinon states. Although the fractional statistics of spinons can be implemented
using the representation theory of the Yangian only for spinons in the Haldane–Shastry model,
we expect the rules governing the allowed values of the total spin of many-spinon states to be
valid for interacting spinons in general spin chains as well.
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Appendix A. Realization of V (3̄, ξ) as evaluation representation

Consider the representation V (3̄, ξ) with Drinfel’d polynomials P1(u) = 1 and P2(u) = u−ξ ,
and denote by |m〉 its YHWS. Then we have

H1,0 |m〉 = H1,1 |m〉 = 0, H2,0 |m〉 = |m〉 , H2,1 |m〉 = ξ |m〉 , (A.1)

and with (31) we deduce

�8 |m〉 = 1√
3

(
ξ + 1

4

) |m〉 . (A.2)

On the other hand we find with (32) that

evζ (�
8) = ζJ 8 + 1

2
√

3
(J 3J 3 − J 8J 8) + 1

4
√

3
(I +I− + I−I +)

− 1
8
√

3
(U+U− + U−U+ + V +V − + V −V +), (A.3)

and hence for the action of �8 on |m〉 in the evaluation representation φζ

�8 |m〉 = 1√
3

(
ζ − 5

12

) |m〉 . (A.4)

Comparison of (A.2) and (A.4) yields ζ = ξ + 2/3.

Appendix B. Irreducible subrepresentation of V (3̄, ξ) ⊗ V (3̄, ξ − 1)

Consider the tensor product V = V (3̄, ξ1) ⊗ V (3̄, ξ2). V contains a proper Y(sl3)
subrepresentation W isomorphic to 3 as sl3 representation if and only if ξ1 − ξ2 = 1 [30]. We
wish to determine the Drinfel’d polynomials of W . For that we have to evaluate the actions of
H1,1 and H2,1 on the YHWS |b〉 = |m〉 ⊗ |c〉 − |c〉 ⊗ |m〉, where |b〉 ∈ 3 and |m〉 , |c〉 ∈ 3̄.

First, we obtain from (30)

�3 |b〉 = 1
2H1,1 |b〉 + 1

8 |b〉 . (B.1)

On the other hand we find the action of �3 on V to be

�(�3) = �3 ⊗ 1 + 1 ⊗ �3 − f 3abJ a ⊗ J b

= �3 ⊗ 1 + 1 ⊗ �3 + 1
2 (I + ⊗ I− − I− ⊗ I +)

− 1
4 (U+ ⊗ U− − U− ⊗ U− − V + ⊗ V − + V − ⊗ V +). (B.2)
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On each factor of V the action of �3 is by (32)

evξ1,2(�
3) = ξ1,2J

3 + 1√
3
J 3J 8 − 1

8 (U+U− + U−U+ − V +V − − V −V +), (B.3)

especially we get

�3 |m〉 = 0, �3 |c〉 =
(

ξ1,2

2
+

1

8

)
|c〉 . (B.4)

Hence, we find

�(�3) |b〉 =
(

ξ2

2
+

3

8

)
|m〉 ⊗ |c〉 −

(
ξ1

2
− 1

8

)
|c〉 ⊗ |m〉 =

(
ξ1

2
− 1

8

)
|b〉 . (B.5)

The last equality is valid if and only if ξ1 − ξ2 = 1, i.e., when the Y(sl3) subrepresentation
W is indeed isomorphic to 3. With (B.1) we deduce using ξ ≡ ξ1 = ξ2 + 1 that
H1,1 |b〉 = (ξ − 1/2) |b〉. As W can be constructed as evaluation representation using (32)
we obtain �8 = �3/

√
3, and with (31) as well as (B.5) we find H2,1 |b〉 = 0. Hence, the

Drinfel’d polynomials of W are P1(u) = u − (ξ − 1/2) and P2(u) = 1.
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